Общие понятия реляционного подхода к организации БД. Основные концепции и термины
Основы реляционной модели данных были впервые изложены в статье Е.Кодда в 1970 г. Эта работа послужила стимулом для большого количества статей и книг, в которых реляционная модель получила дальнейшее развитие. Наиболее распространенная трактовка реляционной модели данных принадлежит К.Дейту [11]. Согласно Дейту, реляционная модель состоит из трех частей:
Структурная часть описывает, какие объекты рассматриваются реляционной моделью. Постулируется, что единственной структурой данных, используемой в реляционной модели, являются нормализованные n-арные отношения.
Целостная часть описывает ограничения специального вида, которые должны выполняться для любых отношений в любых реляционных базах данных. Это целостность сущностей и целостность внешних ключей
.Манипуляционная часть
описывает два эквивалентных способа манипулирования реляционными данными - реляционную алгебру и реляционное исчисление.Сначала рассмотрим структурную часть реляционной модели.
Основными понятиями
реляционных баз данных являются: тип данных, домен, атрибут, кортеж, первичный ключ и отношение.Понятие тип данных в реляционной модели данных полностью адекватно понятию типа данных в языках программирования. Обычно в современных реляционных БД допускается хранение:
Достаточно активно развивается подход к расширению возможностей реляционных систем абстрактными типами данных
.Важно!
Реляционная модель требует, чтобы типы используемых данных были простыми (атомарными).Конечно, понятие атомарности довольно относительно. Так, строковый тип данных можно рассматривать как одномерный массив символов, а целый тип данных - как набор битов. Важно лишь то, что при переходе на такой низкий уровень теряется семантика (смысл) данных. Если строку, выражающую, например, фамилию сотрудника, разложить в массив символов, то при этом теряется смысл такой строки как единого целого.
Собственно, для реляционной модели данных тип используемых данных не важен. Требование, чтобы тип данных был простым, нужно понимать так, что в реляционных операциях не должна учитываться внутренняя структура данных. Конечно, должны быть описаны действия, которые можно производить с данными как с единым целым, например, данные числового типа можно складывать, для строк возможна операция конкатенации и т.д.
С этой точки зрения, если рассматривать массив, например, как единое целое и не использовать поэлементных операций, то массив можно считать простым типом данных. Более того, можно создать свой, сколь угодно сложных тип данных, описать возможные действия с этим типом данных, и, если в операциях не требуется знание внутренней структуры данных, то такой тип данных также будет простым с точки зрения реляционной теории.
Домен
Наиболее правильной интуитивной трактовкой понятия домена является понимание домена как допустимого потенциального множества значений данного типа. Например, можно ввести домен "цвет". Для предметной области "Правила перехода улицы" домен "цвет" будет принимать значения: "красный", "желтый", "зеленый". Никакие другие значения для данного домена СУБД не пропустит.
Домен - это семантическое понятие. Домен можно рассматривать как подмножество значений некоторого типа данных имеющих определенный смысл. Домен характеризуется следующими свойствами:
Кортеж, соответствующий данной схеме отношения, - это множество пар {имя атрибута, значение}, которое содержит одно вхождение каждого имени атрибута, принадлежащего схеме отношения. "Значение" является допустимым значением домена данного атрибута (или типа данных, если понятие домена не поддерживается). Попросту говоря, кортеж - это набор именованных значений заданного типа.
Отношение - это множество кортежей, соответствующих одной схеме отношения. На самом деле, понятие схемы отношения ближе всего к понятию структурного типа данных в языках программирования.
Отношение обычно записывается в виде:
,
или короче
.
Число атрибутов в отношении называют степенью (или -арностью) отношения.
Мощность множества кортежей отношения называют мощностью отношения.
Реляционной базой данных называется набор отношений.
Обычным пользовательским представлением отношения является таблица, заголовком которой является схема отношения, а строками - кортежи отношения-экземпляра; в этом случае имена атрибутов именуют столбцы этой таблицы. Поэтому иногда говорят "столбец таблицы", имея в виду "атрибут отношения". Этой терминологии придерживаются в большинстве коммерческих реляционных СУБД.
Схема отношения - это именованное множество пар {имя атрибута, имя домена (или типа, если понятие домена не поддерживается)}. Степень или "арность" схемы отношения - мощность этого множества. Схема БД (в структурном смысле) - это набор именованных схем отношений. Например, схема отношения "лампочка" схема выглядит так: лампочка( (имя, var char(10)), (мощность, dec ), (напряжение, vol ), (тип цоколя,cok ). При этом ранее должны быть заданы домены vol с областью значений (110,220) и cok с областью значений (обычный, миньон).
Схема БД - это поименованная совокупность схем, входящих в нее отношений.
Как видно, основные структурные понятия реляционной модели данных (если не считать понятия домена) имеют очень простую интуитивную интерпретацию, хотя в теории реляционных БД все они определяются абсолютно формально и точно
.Остановимся теперь на некоторых важных свойствах отношений, которые следуют из приведенных ранее определений:
То свойство, что отношения не содержат кортежей-дубликатов, следует из определения отношения как множества кортежей. В классической теории множеств по определению каждое множество состоит из различных элементов.
Из этого свойства вытекает наличие у каждого отношения так называемого первичного ключа - набора атрибутов, значения которых однозначно определяют кортеж отношения. Понятие первичного ключа является исключительно важным в связи с понятием целостности баз данных.
Забегая вперед, заметим, что во многих практических реализациях РСУБД допускается нарушение свойства уникальности кортежей для промежуточных отношений, порождаемых неявно при выполнении запросов. Такие отношения являются не множествами, а мультимножествами, что в ряде случаев позволяет добиться определенных преимуществ, но иногда приводит к серьезным проблемам.
Свойство отсутствия упорядоченности кортежей отношения также является следствием определения отношения-экземпляра как множества кортежей. Отсутствие требования к поддержанию порядка на множестве кортежей отношения дает дополнительную гибкость СУБД при хранении баз данных во внешней памяти и при выполнении запросов к базе данных. Это не противоречит тому, что при формулировании запроса к БД, например, на языке SQL можно потребовать сортировки результирующей таблицы в соответствии со значениями некоторых столбцов. Такой результат, вообще говоря, не отношение, а некоторый упорядоченный список кортежей.
Атрибуты отношений не упорядочены, поскольку по определению схема отношения есть множество пар {имя атрибута, имя домена}. Для ссылки на значение атрибута в кортеже отношения всегда используется имя атрибута. Это свойство теоретически позволяет, например, модифицировать схемы существующих отношений не только путем добавления новых атрибутов, но и
путем удаления существующих атрибутов. Однако в большинстве существующих систем такая возможность не допускается, и хотя упорядоченность набора атрибутов отношения явно не требуется, часто в качестве неявного порядка атрибутов используется их порядок в линейной форме определения схемы отношения.Значения всех атрибутов являются атомарными. Это следует из определения домена как потенциального множества значений простого типа данных, т.е. среди значений домена не могут содержаться множества значений (отношения). Принято говорить, что в реляционных базах данных допускаются только нормализованные отношения или отношения, представленные в первой нормальной форме.
Нормализованные отношения
составляют основу классического реляционного подхода к организации баз данных. Они обладают некоторыми ограничениями (не любую информацию удобно представлять в виде плоских таблиц), но существенно упрощают манипулирование данными.Хотя понятие модели данных является общим, и можно говорить о иерархической, сетевой, некоторой семантической и т.д. моделях данных, нужно отметить, что это понятие было введено в обиход применительно к реляционным системам и наиболее эффективно используется именно в этом контексте.
Наиболее распространенная трактовка реляционной модели данных, по-видимому, принадлежит Дейту [2]
. Согласно Дейту реляционная модель состоит из трех частей, описывающих разные аспекты работы с данными: структурной части, манипуляционной части и целостной части.В структурной части модели фиксируется, что единственной структурой данных, используемой в реляционных БД, является нормализованное n-арное отношение. По сути дела, в предыдущих двух разделах этой лекции мы рассматривали именно понятия и свойства структурной составляющей реляционной модели.
В манипуляционной части модели утверждаются два фундаментальных механизма манипулирования реляционными БД - реляционная алгебра и реляционное исчисление.
Первый механизм базируется в основном на классической теории множеств (с некоторыми уточнениями), а второй - на классическом логическом аппарате исчисления предикатов первого порядка. Мы рассмотрим эти механизмы более подробно далее, а пока лишь заметим, что основной функцией манипуляционной части реляционной модели является обеспечение меры реляционности любого конкретного языка реляционных БД: язык называется реляционным, если он обладает не меньшей выразительностью и мощностью, чем реляционная алгебра или реляционное исчисление.
Наконец, в целостной части реляционной модели данных фиксируются два базовых требования целостности, которые должны поддерживаться в любой реляционной СУБД. Первое требование называется требованием целостности сущностей. Объекту или сущности реального мира в реляционных БД соответствуют кортежи отношений. Конкретно требование состоит в том, что любой кортеж любого отношения отличим от любого другого кортежа этого отношения, т.е. другими словами, любое отношение должно обладать первичным ключом. Как мы видели в предыдущем разделе, это требование автоматически удовлетворяется, если в системе не нарушаются базовые свойства отношений.
Второе требование называется требованием целостности по ссылкам и является несколько более сложным. Требование целостности по ссылкам, или требование внешнего ключа состоит в том, что для каждого значения внешнего ключа, появляющегося в ссылающемся отношении, в отношении, на которое ведет ссылка, должен найтись кортеж с таким же значением первичного ключа, либо значение внешнего ключа должно быть неопределенным (т.е. ни на что не указывать).
Понятно, что при обновлении ссылающегося отношения (вставке новых кортежей или модификации значения внешнего ключа в существующих кортежах) достаточно следить за тем, чтобы не появлялись некорректные значения внешнего ключа. Но как быть при удалении кортежа из отношения, на которое ведет ссылка?
Здесь существуют три подхода, каждый из которых поддерживает целостность по ссылкам. Первый подход заключается в том, что запрещается производить удаление кортежа, на который существуют ссылки (т.е. сначала нужно либо удалить ссылающиеся кортежи, либо соответствующим образом изменить значения их внешнего ключа). При втором подходе при удалении кортежа, на который имеются ссылки, во всех ссылающихся кортежах значение внешнего ключа автоматически становится неопределенным. Наконец, третий подход (каскадное удаление) состоит в том, что при удалении кортежа из отношения, на которое ведет ссылка, из ссылающегося отношения автоматически удаляются все ссылающиеся кортежи.
В развитых реляционных СУБД обычно можно выбрать способ поддержания целостности по ссылкам для каждой отдельной ситуации определения внешнего ключа. Конечно, для принятия такого решения необходимо анализировать требования конкретной прикладной области.
Третья часть реляционной модели, манипуляционная часть, утверждает, что доступ к реляционным данным осуществляется при помощи реляционной алгебры или эквивалентного ему реляционного исчисления.
В реализациях конкретных реляционных СУБД сейчас не используется в чистом виде ни реляционная алгебра, ни реляционное исчисление. Фактическим стандартом доступа к реляционным данным стал язык SQL (Structured Query Language). Язык SQL представляет собой смесь операторов реляционной алгебры и выражений реляционного исчисления, использующий синтаксис, близкий к фразам английского языка и расширенный дополнительными возможностями, отсутствующими в реляционной алгебре и реляционном исчислении. Вообще, язык доступа к данным называется реляционно полным, если он по выразительной силе не уступает реляционной алгебре (или, что то же самое, реляционному исчислению), т.е. любой оператор реляционной алгебры может быть выражен средствами этого языка. Именно таким и является язык SQL.
Как отмечалось выше, в манипуляционной составляющей определяются два базовых механизма манипулирования реляционными данными - основанная на теории множеств реляционная алгебра и базирующееся на математической логике (точнее, на исчислении предикатов первого порядка) реляционное исчисление. В свою очередь, обычно рассматриваются два вида реляционного исчисления - исчисление доменов и исчисление предикатов
.Все эти механизмы обладают одним важным свойством: они замкнуты относительно понятия отношения. Это означает, что выражения реляционной алгебры и формулы реляционного исчисления определяются над отношениями реляционных БД и результатом вычисления также являются отношения. В результате любое выражение или формула могут интерпретироваться, как отношения, что позволяет использовать их в других выражениях или формулах.
Как мы увидим, алгебра и исчисление обладают большой выразительной мощностью: очень сложные запросы к базе данных могут быть выражены с помощью одного выражения реляционной алгебры или одной формулы реляционного исчисления. Именно по этой причине именно эти механизмы включены в реляционную модель данных. Язык манипулирования конкретной СУБД является реляционно полным
, если любой запрос, выражаемый с помощью одного выражения реляционной алгебры или одной формулы реляционного исчисления, может быть выражен с помощью одного оператора этого языка.Известно (и мы не будем это доказывать), что механизмы реляционной алгебры и реляционного исчисления эквивалентны, т.е. для любого допустимого выражения реляционной алгебры можно построить эквивалентную (т.е. производящую такой же результат) формулу реляционного исчисления и наоборот. Почему же в реляционной модели данных присутствуют оба эти механизма?
Дело в том, что они различаются уровнем процедурности. Выражения реляционной алгебры строятся на основе алгебраических операций (высокого уровня), и подобно тому, как интерпретируются арифметические и логические выражения, выражение реляционной алгебры также имеет процедурную интерпретацию. Другими словами, запрос, представленный на языке реляционной алгебры, может быть вычислен на основе вычисления элементарных алгебраических операций с учетом их старшинства и возможного наличия скобок. Для формулы реляционного исчисления однозначная интерпретация, вообще говоря, отсутствует. Формула только устанавливает условия, которым должны удовлетворять кортежи результирующего отношения. Поэтому языки реляционного исчисления являются более непроцедурными или декларативными.
Поскольку механизмы реляционной алгебры и реляционного исчисления эквивалентны, то в конкретной ситуации для проверки степени реляционности некоторого языка БД можно пользоваться любым из этих механизмов.
Заметим, что крайне редко алгебра или исчисление принимаются в качестве полной основы какого-либо языка БД. Обычно (как, например, в случае языка SQL) язык основывается на некоторой смеси алгебраических и логических конструкций. Тем не менее, знание алгебраических и логических основ языков баз данных часто бывает полезно на практике.
В нашем изложении мы в основном следуем подходу Дейта, примененному (хотя и не изобретенному) им в последнем издании книги "Введение в системы баз данных"[2] . Для экономии времени и места мы не будем вводить каких-либо строгих синтаксических конструкций, а в основном ограничимся рассмотрением материала на содержательном уровне.
Основная идея реляционной алгебры состоит в том, что коль скоро отношения являются множествами, то средства манипулирования отношениями могут базироваться на традиционных теоретико-множественных операциях, дополненных некоторыми специальными операциями, специфичными для баз данных.
Существует много подходов к определению реляционной алгебры, которые различаются набором операций и способами их интерпретации, но в принципе, более или менее равносильны. Мы опишем немного расширенный начальный вариант алгебры, который был предложен Коддом. В этом варианте набор основных алгебраических операций состоит из восьми операций, которые делятся на два класса - теоретико-множественные операции и специальные реляционные операции. В состав теоретико-множественных операций входят операции:
Специальные реляционные операции включают:
Кроме того, в состав алгебры включается операция присваивания, позволяющая сохранить в базе данных результаты вычисления алгебраических выражений, и операция переименования атрибутов, дающая возможность корректно сформировать заголовок (схему) результирующего отношения.
Если не вдаваться в некоторые тонкости, которые мы рассмотрим в следующих подразделах, то почти все операции предложенного выше набора обладают очевидной и простой интерпретацией.
Поскольку результатом любой реляционной операции (кроме операции присваивания) является некоторое отношение, можно образовывать реляционные выражения, в которых вместо отношения-операнда некоторой реляционной операции находится вложенное реляционное выражение.
Хотя в основе теоретико-множественной части реляционной алгебры лежит классическая теория множеств, соответствующие операции реляционной алгебры обладают некоторыми особенностями.
Начнем с операции объединения (все, что будет говориться по поводу объединения, переносится на операции пересечения и взятия разности). Смысл операции объединения в реляционной алгебре в целом остается теоретико-множественным. Но если в теории множеств операция объединения осмысленна для любых двух множеств-операндов, то в случае реляционной алгебры результатом операции объединения должно являться отношение. Если допустить в реляционной алгебре возможность теоретико-множественного объединения произвольных двух отношений (с разными схемами), то, конечно, результатом операции будет множество, но множество разнотипных кортежей, т.е. не отношение. Если исходить из требования замкнутости реляционной алгебры относительно понятия отношения, то такая операция объединения является бессмысленной.
Все эти соображения приводят к появлению понятия совместимости отношений по объединению: два отношения совместимы по объединению в том и только в том случае, когда обладают одинаковыми заголовками. Более точно, это означает, что в заголовках обоих отношений содержится один и тот же набор имен атрибутов, и одноименные атрибуты определены на одном и том же домене.
Если два отношения совместимы по объединению, то при обычном выполнении над ними операций объединения, пересечения и взятия разности результатом операции является отношение с корректно определенным заголовком, совпадающим с заголовком каждого из отношений-операндов. Напомним, что если два отношения "почти" совместимы по объединению, т.е. совместимы во всем, кроме имен атрибутов, то до выполнения операции типа соединения эти отношения можно сделать полностью совместимыми по объединению путем применения операции переименования
.Заметим, что включение в состав операций реляционной алгебры трех операций объединения, пересечения и взятия разности является очевидно избыточным, поскольку известно, что любая из этих операций выражается через две других. Тем не менее, Кодд в свое время решил включить все три операции, исходя из интуитивных потребностей потенциального пользователя системы реляционных БД, далекого от математики
.Другие проблемы связаны с операцией взятия прямого произведения двух отношений. В теории множеств прямое произведение может быть получено для любых двух множеств, и элементами результирующего множества являются пары, составленные из элементов первого и второго множеств. Поскольку отношения являются множествами,
то и для любых двух отношений возможно получение прямого произведения. Но результат не будет отношением! Элементами результата будут являться не кортежи, а пары кортежей.Поэтому в реляционной алгебре используется специализированная форма операции взятия прямого произведения - расширенное прямое произведение отношений. При взятии расширенного прямого произведения двух отношений элементом результирующего отношения является кортеж, являющийся конкатенацией (или слиянием) одного кортежа первого отношения и одного кортежа второго отношения.
Но теперь возникает второй вопрос - как получить корректно сформированный заголовок отношения-результата? Очевидно, что проблемой может быть именование атрибутов результирующего отношения, если отношения-операнды обладают одноименными атрибутами.
Эти соображения приводят к появлению понятия совместимости по взятию расширенного прямого произведения
. Два отношения совместимы по взятию прямого произведения в том и только в том случае, если множества имен атрибутов этих отношений не пересекаются. Любые два отношения могут быть сделаны совместимыми по взятию прямого произведения путем применения операции переименования к одному из этих отношений.Следует заметить, что операция взятия прямого произведения не является слишком осмысленной на практике. Во-первых, мощность ее результата очень велика даже при допустимых мощностях операндов, а во-вторых, результат операции не более информативен, чем взятые в совокупности операнды. Как мы увидим немного ниже, основной смысл включения операции расширенного прямого произведения в состав реляционной алгебры состоит в том, что на ее основе определяется действительно полезная операция соединения.
По поводу теоретико-множественных операций реляционной алгебры следует еще заметить, что все четыре операции являются ассоциативными. Т. е., если обозначить через OP любую из четырех операций, то (A OP B) OP C = A (B OP C), и следовательно, без введения двусмысленности можно писать A OP B OP C (A, B и C - отношения, обладающие свойствами, требуемыми для корректного выполнения соответствующей операции). Все операции, кроме взятия разности, являются коммутативными, т.е. A OP B = B OP A.
В этом подразделе мы несколько подробнее рассмотрим специальные реляционные операции реляционной алгебры: ограничение, проекция, соединение и деление.
Операция ограничения
Операция ограничения требует наличия двух операндов: ограничиваемого отношения и простого условия ограничения. Простое условие ограничения может иметь либо вид (a comp-op b), где а и b - имена атрибутов ограничиваемого отношения, для которых осмысленна операция сравнения comp-op, либо вид (a comp-op const), где a - имя атрибута ограничиваемого отношения, а const - литерально заданная константа.
На интуитивном уровне операцию ограничения лучше всего представлять как взятие некоторой "горизонтальной" вырезки из отношения-операнда.
Операция взятия проекции
Операция взятия проекции также требует наличия двух операндов - проецируемого отношения A и списка имен атрибутов, входящих в заголовок отношения A.
Результатом проекции отношения A по списку атрибутов a1, a2, ..., an является отношение, с заголовком, определяемым множеством атрибутов a1, a2, ..., an, и с телом, состоящим из кортежей вида <a1:v1, a2:v2, ..., an:vn> таких, что в отношении A имеется кортеж, атрибут a1 которого имеет значение v1, атрибут a2 имеет значение v2, ..., атрибут an имеет значение vn. Тем самым, при выполнении операции проекции выделяется "вертикальная" вырезка отношения-операнда с естественным уничтожением потенциально возникающих кортежей-дубликатов.
Операция соединения отношений
Общая операция соединения (называемая также соединением по условию) требует наличия двух операндов - соединяемых отношений и третьего операнда - простого условия. Пусть соединяются отношения A и B. Как и в случае операции ограничения, условие соединения comp имеет вид либо (a comp-op b), либо (a comp-op const), где a и b - имена атрибутов отношений A и B, const - литерально заданная константа, а comp-op - допустимая в данном контексте операция сравнения.
Тогда по определению результатом операции сравнения является отношение, получаемое путем выполнения операции ограничения по условию comp прямого произведения отношений A и B.
Если внимательно осмыслить это определение, то станет ясно, что в общем случае применение условия соединения существенно уменьшит мощность результата промежуточного прямого произведения отношений-операндов только в том случае, когда условие соединения имеет вид (a comp-op b), где a и b - имена атрибутов разных отношений-операндов. Поэтому на практике обычно считают реальными операциями соединения именно те операции, которые основываются на условии соединения приведенного вида.
Хотя операция соединение в нашей интерпретации не является примитивной (поскольку она определяется с использованием прямого произведения и проекции), в силу особой практической важности она включается в базовый набор операций реляционной алгебры.
Имеется важный частный случай соединения - эквисоединение и простое, но важное расширение операции эквисоединения - естественное соединение. Операция соединения называется операцией эквисоединения, если условие соединения имеет вид (a = b), где a и b - атрибуты разных операндов соединения. Этот случай важен потому, что (a) он часто встречается на практике, и (b) для него существуют эффективные алгоритмы реализации.
Операция естественного соединения применяется к паре отношений A и B, обладающих (возможно составным) общим атрибутом c (т.е. атрибутом с одним и тем же именем и определенным на одном и том же домене). Пусть ab обозначает объединение заголовков отношений A и B. Тогда естественное соединение A и B - это спроектированный на ab результат эквисоединения A и B по A/c и BBC. Если вспомнить введенное нами в конце предыдущей главы определение внешнего ключа отношения, то должно стать понятно, что основной смысл операции естественного соединения - возможность восстановления сложной сущности, декомпозированной по причине требования первой нормальной формы. Операция естественного соединения не включается прямо в состав набора операций реляционной алгебры, но она имеет очень важное практическое значение.
Операция деления отношений
Эта операция наименее очевидна из всех операций реляционной алгебры и поэтому нуждается в более подробном объяснении. Пусть заданы два отношения - A с заголовком {a
1, a2, ..., an, b1, b2, ..., bm} и B с заголовком {b1, b2, ..., bm}. Будем считать, что атрибут bi отношения A и атрибут bi отношения B не только обладают одним и тем же именем, но и определены на одном и том же домене. Назовем множество атрибутов {aj} составным атрибутом a, а множество атрибутов {bj} - составным атрибутом b. После этого будем говорить о реляционном делении бинарного отношения A(a,b) на унарное отношение B(b).Результатом деления A на B является унарное отношение C(a), состоящее из кортежей v таких, что в отношении A имеются кортежи <v, w> такие, что множество значений {w} включает множество значений атрибута b в отношении B.
Предположим, что в базе данных сотрудников поддерживаются два отношения: СОТРУДНИКИ ( ИМЯ, ОТД_НОМЕР ) и ИМЕНА ( ИМЯ ), причем унарное отношение ИМЕНА содержит все фамилии, которыми обладают сотрудники организации. Тогда после выполнения операции реляционного деления отношения СОТРУДНИКИ на отношение ИМЕНА будет получено унарное отношение, содержащее номера отделов, сотрудники которых обладают всеми возможными в этой организации именами.
Предположим, что мы работаем с базой данных, обладающей схемой СОТРУДНИКИ (СОТР_НОМ, СОТР_ИМЯ, СОТР_ЗАРП, ОТД_НОМ) и ОТДЕЛЫ (ОТД_НОМ, ОТД_КОЛ, ОТД_НАЧ), и хотим узнать имена и номера сотрудников, являющихся начальниками отделов с количеством сотрудников больше 50.
Если бы для формулировки такого запроса использовалась реляционная алгебра, то мы получили бы алгебраическое выражение, которое читалось бы, например, следующим образом:
Мы четко сформулировали последовательность шагов выполнения запроса, каждый из которых соответствует одной реляционной операции. Если же сформулировать тот же запрос с использованием реляционного исчисления, которому посвящается этот раздел, то мы получили бы формулу, которую можно было бы прочитать, например, следующим образом: Выдать СОТР_ИМЯ и СОТР_НОМ для сотрудников таких, что существует отдел с таким же значением ОТД_НАЧ и значением ОТД_КОЛ большим 50.
Во второй формулировке мы указали лишь характеристики результирующего отношения, но ничего не сказали о способе его формирования. В этом случае система должна сама решить, какие операции и в каком порядке нужно выполнить над отношениями СОТРУДНИКИ и ОТДЕЛЫ. Обычно говорят, что алгебраическая формулировка является процедурной, т.е. задающей правила выполнения запроса, а логическая - описательной (или декларативной), поскольку она всего лишь описывает свойства желаемого результата. Как мы указывали в начале лекции, на самом деле эти два механизма эквивалентны и существуют не очень сложные правила преобразования одного формализма в другой.
Реляционное исчисление является прикладной ветвью формального механизма исчисления предикатов первого порядка. Базисными понятиями исчисления являются понятие переменной с определенной для нее областью допустимых значений и понятие правильно построенной формулы, опирающейся на переменные, предикаты и кванторы.
В зависимости от того, что является областью определения переменной, различаются исчисление кортежей и исчисление доменов. В исчислении кортежей областями определения переменных являются отношения базы данных, т.е. допустимым значением каждой переменной является кортеж некоторого отношения. В исчислении доменов областями определения переменных являются домены, на которых определены атрибуты отношений базы данных, т.е. допустимым значением каждой переменной является значение некоторого домена. Мы рассмотрим более подробно исчисление кортежей, а в конце лекции коротко опишем особенности исчисления доменов.
В отличие от раздела, посвященного реляционной алгебре, в этом разделе нам не удастся избежать использования некоторого конкретного синтаксиса, который мы, тем не менее, формально определять не будем. Необходимые синтаксические конструкции будут вводиться по мере необходимости. В совокупности, используемый синтаксис близок, но не полностью совпадает с синтаксисом языка баз данных QUEL, который долгое время являлся основным языком СУБД Ingres.
Для определения кортежной переменной используется оператор RANGE. Например, для того, чтобы определить переменную СОТРУДНИК, областью определения которой является отношение СОТРУДНИКИ, нужно употребить конструкцию
RANGE СОТРУДНИК IS СОТРУДНИКИ
Как мы уже говорили, из этого определения следует, что в любой момент времени переменная СОТРУДНИК представляет некоторый кортеж отношения СОТРУДНИКИ. При использовании кортежных переменных в формулах можно ссылаться на значение атрибута переменной (это аналогично тому, как, например, при программировании на языке Си можно сослаться на значение поля структурной переменной). Например, для того, чтобы сослаться на значение атрибута СОТР_ИМЯ переменной СОТРУДНИК, нужно употребить конструкцию СОТРУДНИК.СОТР_ИМЯ.
Правильно построенные формулы (WFF - Well-Formed Formula) служат для выражения условий, накладываемых на кортежные переменные. Основой WFF являются простые сравнения (comparison), представляющие собой операции сравнения скалярных значений (значений атрибутов переменных или литерально заданных констант). Например, конструкция "СОТРУДНИК.СОТР_НОМ = 140" является простым сравнением. По определению, простое сравнение является WFF, а WFF, заключенная в круглые скобки, является простым сравнением.
Более сложные варианты WFF строятся с помощью логических связок NOT, AND, OR и IF ... THEN. Так, если form - WFF, а comp - простое сравнение, то NOT form, comp AND form, comp OR form и IF comp THEN form являются WFF.
Наконец, допускается построение WFF с помощью кванторов. Если form - это WFF, в которой участвует переменная var, то конструкции EXISTS var (form) и FORALL var (form) представляют wff.
Переменные, входящие в WFF, могут быть свободными или связанными. Все переменные, входящие в WFF, при построении которой не использовались кванторы, являются свободными. Фактически, это означает, что если для какого-то набора значений свободных кортежных переменных при вычислении WFF получено значение true, то эти значения кортежных переменных могут входить в результирующее отношение. Если же имя переменной использовано сразу после квантора при построении WFF вида EXISTS var (form) или FORALL var (form), то в этой WFF и во всех WFF, построенных с ее участием, var - это связанная переменная. Это означает, что такая
переменная не видна за пределами минимальной WFF, связавшей эту переменную. При вычислении значения такой WFF используется не одно значение связанной переменной, а вся ее область определения.Пусть СОТР1 и СОТР2 - две кортежные переменные, определенные на отношении СОТРУДНИКИ. Тогда, WFF EXISTS СОТР2 (СОТР1.СОТР_ЗАРП > СОТР2.СОТР_ЗАРП) для текущего кортежа переменной СОТР1 принимает значение true в том и только в том случае, если во всем отношении СОТРУДНИКИ найдется кортеж (связанный с переменной СОТР2) такой, что значение его атрибута СОТР_ЗАРП удовлетворяет внутреннему условию сравнения. WFF FORALL СОТР2 (СОТР1.СОТР_ЗАРП > СОТР2.СОТР_ЗАРП) для текущего кортежа переменной СОТР1 принимает значение true в том и только в том случае, если для всех кортежей отношения СОТРУДНИКИ (связанных с переменной СОТР2) значения атрибута СОТР_ЗАРП удовлетворяют условию сравнения.
На самом деле, правильнее говорить не о свободных и связанных переменных, а о свободных и связанных вхождениях переменных. Легко видеть, что если переменная var является связанной в WFF form, то во всех WFF, включающих данную, может использоваться имя переменной var, которая может быть свободной или связанной, но в любом случае не имеет никакого отношения к вхождению переменной var в WFF form. Вот пример:
EXISTS СОТР2 (СОТР1.СОТР_ОТД_НОМ = СОТР2.СОТР_ОТД_НОМ) AND
FORALL СОТР2 (СОТР1.СОТР_ЗАРП > СОТР2.СОТР_ЗАРП)
Здесь мы имеем два связанных вхождения переменной СОТР2 с совершенно разным смыслом.
Итак, WFF обеспечивают средства формулировки условия выборки из отношений БД. Чтобы можно было использовать исчисление для реальной работы с БД, требуется еще один компонент, который определяет набор и имена столбцов результирующего отношения. Этот компонент называется целевым списком (target_list).
Целевой список строится из целевых элементов, каждый из которых может иметь следующий вид:
Последний вариант требуется в тех случаях, когда в WFF используются несколько свободных переменных с одинаковой областью определения.
Выражением реляционного исчисления кортежей называется конструкция вида target_list WHERE wff. Значением выражения является отношение, тело которого определяется WFF, а набор атрибутов и их имена - целевым списком.
В исчислении доменов областью определения переменных являются не отношения, а домены. Применительно к базе данных СОТРУДНИКИ-ОТДЕЛЫ можно говорить, например, о доменных переменных ИМЯ (значения - допустимые имена) или НОСОТР (значения - допустимые номера сотрудников).
Основным формальным отличием исчисления доменов от исчисления кортежей является наличие дополнительного набора предикатов, позволяющих выражать так называемые условия членства. Если R - это n-арное отношение с атрибутами a
1, a2, ..., an, то условие членства имеет видR (ai1:vi1, ai2:vi2, ..., aim:vim) (m <= n),
где v
ij - это либо литерально задаваемая константа, либо имя кортежной переменной. Условие членства принимает значение true в том и только в том случае, если в отношении R существует кортеж, содержащий указанные значения указанных атрибутов. Если vij - константа, то на атрибут aij задается жесткое условие, не зависящее от текущих значений доменных переменных; если же vij - имя доменной переменной, то условие членства может принимать разные значения при разных значениях этой переменной.Во всех остальных отношениях формулы и выражения исчисления доменов выглядят похожими на формулы и выражения исчисления кортежей. В частности, конечно, различаются свободные и связанные вхождения доменных переменных.
Для примера сформулируем с использованием исчисления доменов запрос "Выдать номера и имена сотрудников, не получающих минимальную заработную плату" (будем считать для простоты, что мы определили доменные переменные, имена которых совпадают с именами атрибутов отношения СОТРУДНИКИ, а в случае, когда требуется несколько доменных переменных, определенных на одном домене, мы будем добавлять в конце имени цифры):
СОТР_НОМ, СОТР_ИМЯ WHERE EXISTS СОТР_ЗАРП1
(СОТРУДНИКИ (СОТР_ЗАРП1) AND
СОТРУДНИКИ (СОТР_НОМ, СОТР_ИМЯ, СОТР_ЗАРП) AND
СОТР_ЗАРП > СОТР_ЗАРП1)
Реляционное исчисление доменов является основой большинства языков запросов, основанных на использовании форм. В частности, на этом исчислении базировался известный язык Query-by-Example, который был первым (и наиболее интересным) языком в семействе языков, основанных на табличных формах.
Литература и источники